Resumen
Este trabajo analiza el impacto actual y proyectado de la inteligencia artificial (IA) en psicoterapia, psiquiatría y psicología clínica. Su OBJETIVO es valorar cómo estas tecnologías pueden optimizar el diagnóstico, la intervención terapéutica y el acceso al cuidado emocional sin reemplazar el vínculo humano. Mediante una METODOLOGÍA de revisión narrativa, se sintetizaron aportes teóricos y empíricos recientes que muestran que la IA, lejos de deshumanizar la práctica clínica, puede reforzarla cuando se aplica éticamente. Los RESULTADOS destacan siete áreas clave de aplicación: detección precoz de síntomas mediante algoritmos entrenados; acompañamiento emocional a través de chatbots empáticos; personalización de intervenciones basadas en biomarcadores, lenguaje y narrativas; uso de realidad virtual para exposiciones controladas; apoyo a poblaciones rurales; generación automatizada de informes clínicos y mejora en la adherencia terapéutica. También se subrayan desafíos éticos como el sesgo algorítmico, la privacidad de los datos y la supervisión profesional. En CONCLUSIÓN, la IA no sustituye al terapeuta, sino que amplifica su capacidad diagnóstica y relacional. Su integración responsable fortalece una atención más precisa, equitativa y humanizada, capaz de responder a las demandas contemporáneas de la salud mental.
Citas
Al-Nafjan, A. & Aldayel, M. (2024). Anxiety detection system based on galvanic skin-response signals. Applied Sciences, 14(23), 10788. https://doi.org/10.3390/app142310788
Alzakari, S. A., Allinjawi, A., Aldrees, A., Zamzami, N., Umer, M., Innab, N. & Ashraf, I. (2025). Early detection of autism spectrum disorder using explainable AI and optimized teaching strategies. Journal of neuroscience methods, 413, 110315. https://doi.org/10.1016/j.jneumeth.2024.110315
Arrom-Llabrés, M., Mendoza-Medialdea, M. T. & Gutiérrez-Maldonado, J. (2025). Innovative Approaches to Eating Disorders Treatment: A Systematic Review on the Effectiveness of Virtual Reality. Applied Sciences, 15(6), 3334. https://doi.org/10.3390/app15063334
Babu, A. & Akhil, P. J. (2024). Artificial intelligence in mental healthcare: transformative potential vs ethical challenges. Frontiers in Psychology, 15. https://doi.org/10.3389/fpsyg.2024.1378904
Beele, G., Liesong, P., Bojanowski, S., Hildebrand, K., Weingart, M., Asbrand, J., Correll, C. U., Morina, N., Uhlhaas, P. J. (2024). Virtual-reality exposure therapy for reducing school anxiety in adolescents: Pilot study. JMIR Mental Health, 11, e56235. https://doi.org/10.2196/56235
Ben-Zion, Z., Witte, K., Jagadish, A. K., Duek, O., Harpaz-Rotem, I., Khorsandian, M. C., Burrer, A., Seifritz, E., Homan, P., Schulz, E. & Spiller, T. R. (2025). Assessing and alleviating state anxiety in large language models. NPJ Digital Medicine, 8, 132. https://doi.org/10.1038/s41746-025-01512-6
Benítez-Andrades, J. A., García-Ordás, M. T., Russo, M., Sakor, A., Fernandes Rotger, L. D. & Vidal, M.E. (2024). Empowering machine learning models with contextual knowledge for enhancing the detection of eating disorders in social media posts. Semantic Web, 4(5), 873-892. https://arxiv.org/abs/2402.05536
Crocamo, C., Cioni, R. M., Canestro, A., Nasti, C., Palpella, D., Piacenti, S., Bartoccetti, A., Re, M., Simonetti, V., Barattieri di San Pietro, C., Bulgheroni, M., Bartoli, F. & Carrà, G. (2025). Acoustic and natural language markers for bipolar disorder: A pilot mHealth cross-sectional study. JMIR Formative Research, 9, e65555. https://doi.org/10.2196/65555
Darcy, A. M., Louie, A. K. & Roberts, L. W. (2016). Machine Learning and the Profession of Medicine. JAMA, 315(6), 551–552. https://doi.org/10.1001/jama.2015.18421
Döllinger, N., Wolf, E., Mal, D., Wenninger, S., Botsch, M., Latoschik, M. E. & Wienrich, C. (2022). Resize Me! Exploring the User Experience of Embodied Realistic Modulatable Avatars for Body Image Intervention in Virtual Reality. arXiv preprint arXiv:2203.05060. https://arxiv.org/abs/2203.05060
Fitzpatrick, K. K., Darcy, A. & Vierhile, M. (2017). Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Mental Health, 4(2), e19. https://doi.org/10.2196/mental.7785
Haque, M. D. R. & Rubya, S. (2023). An overview of chatbot-based mobile mental health apps: Insights from app description and user reviews. JMIR Mental Health and uHealth, 11, e44838. https://doi.org/10.2196/44838
Held, P., Pridgen, S. A., Chen, Y., Akhtar, Z., Amin, D. & Pohorence, S. (2024). A Novel Cognitive Behavioral Therapy–Based Generative AI Tool (Socrates 2.0) to Facilitate Socratic Dialogue: Protocol for a Mixed Methods Feasibility Study. JMIR Research Protocolé, 13. https://doi.org/10.2196/58195
Hua, Y., Zhao, L. & Chen, X. (2025). A scoping review of large language models for generative tasks in mental health care. NPJ Digital Medicine, 8, 230. https://doi.org/10.1038/s41746-025-01611-4
Jinbo, H. & Feng, J. (2025). Artificial Intelligence and Social Media for the Detection of Eating Disorders. 02-76-3478. International Journal of eating disorders, https://doi.org/10.1002/eat.24438
Jun, J., Dong, W., Jiaqi, L., Jingzhu, P., Chaonan, F., Rujia, L., Chuan, S. & Yantao, M. (2024). Depressive and mania mood state detection through voice as a biomarker. Frontiers in Neurology, 15, 1394210. https://doi.org/10.3389/fneur.2024.1394210
Kadirvelu, B., Bellido Bel, T., Freccero, A., Di Simplicio, M., Nicholls, D. & Faisal, A. A. (2025). Digital Phenotyping for Adolescent Mental Health: A Feasibility Study Employing Machine Learning to Predict Mental Health Risk From Active and Passive Smartphone Data. arXiv preprint arXiv:2501.08851. https://arxiv.org/abs/2501.08851
Karantonis, J. A., Susan L. Rossell,S. L., Berk, M. & Van Rheenen, T. E. (2021). The effect of virtual reality based cognitive behavioral therapy in patients with depressive disorder: A meta-analysis of randomized controlled trials. Journal of Affective Disorders, 282, 776-783. https://doi.org/10.1016/j.jad.2020.12.186
Lan, L., Ke, L. & Diao, L. (2024). Exploring the application of AI in the education of children with autism: A Public Health-Driven Transformer model. Frontiers in Psychiatry, 15, 1521926. https://doi.org/10.3389/fpsyt.2024.1521926
Lee, Y. K., Lee, I., Shin, M., Bae, S. & Hahn, S. (2024). Chain of Empathy: Enhancing Empathetic Response of Large Language Models Based on Psychotherapy Models. Korean Journal of Cognitive Science, 35(1), 23-48. https://doi.org/10.48550/arXiv.2311.04915
Linardon, J., Fitzsimmons-Craft, E. E. & Wilksch, S. (2025). AI-Readiness in the Eating Disorders Field. International Journal of Eating Disorders, 58(4), 724-734. https://doi.org/10.1002/eat.24385
Li, X., Kang, Q. & Gu, H. (2023). A comprehensive review for machine learning on neuroimaging in obsessive-compulsive disorder. Frontiers in Human Neuroscience, 17, 1280512. https://doi.org/10.3389/fnhum.2023.1280512
Lønfeldt, N. N., Clemmensen, L. K. H. & Pagsberg, A. K. (2023). A wearable artificial intelligence feedback tool (wrist angel) for treatment and research of obsessive-compulsive disorder: protocol for a nonrandomized pilot study. JMIR Research Protocols, 12, e45123. https://doi.org/10.2196/45123
MacNeill, A. L., Doucet, S. & Luke, A. (2024). Effectiveness of a mental health chatbot for people with chronic conditions: Randomized controlled trial. JMIR Formative Research, 8, e50025. https://doi.org/10.2196/50025
Mahmood, M. A., Jamel, L., Alturki, N. & Tawfeek, A. M. (2025). Leveraging artificial intelligence for diagnosis of children autism through facial expressions. Scientific Reports. 15, 11945. https://doi.org/10.1038/s41598-025-96014-6
Monaco, F, Vignapiano, A., Piacente, M., Pagano, C., Mancuso, C., Steardo, L., Marenna, A., Farina, F., Petrillo, G., Leo, S., Ferrara, E., Palermo, S., Martiadis, V., Solmi, M., Monteleone A. M., Fasano, A. & Corrivetti, G. (2024). An advanced Artificial Intelligence platform for a personalised treatment of Eating Disorders. Frontiers in Psychiatry, 15, 1414439. https://doi.org/10.3389/fpsyt.2024.1414439
Mullick, T., Radovic, A., Shaaban, S. & Doryab, A. (2022). Predicting depression in adolescents using mobile and wearable sensors: Multimodal machine-learning exploratory study. JMIR Formative Research, 6(6), e35807. https://doi.org/10.2196/35807
Naseriparsa, M., Sukunesan, S., Cai, Z., Alfarraj, O., Tolba, A., Rabooki, S. F. & Xia, F. (2025). ED-Filter: Dynamic Feature Filtering for Eating Disorder Classification. arXiv preprint arXiv:2501.14785. https://arxiv.org/abs/2501.14785
Ohse, J., Hadžić, B., Mohammed, P., Peperkorn, N., Fox, J., Krutzki, J., Lyko, A., Mingyu, F., Zheng, X., Rätsch, M. & Shiban, Y. (2024). GPT-4 shows potential for identifying social anxiety from clinical interview data. Scientific Reports, 14, 30498. https://doi.org/10.1038/s41598-024-82192-2
Omar, M., Soffer, S., Charney, A. W., Landi, I., Nadkarni, G. N. & Klang, E. (2024). Applications of large language models in psychiatry: A systematic review. Frontiers in Psychiatry, 15, 1422807. https://doi.org/10.3389/fpsyt.2024.1422807
Pan, Y., Wang, P, Xue, B., Yanbin, Y., Shen, S., Wang, S. & Xing W. (2025). Machine learning for the diagnosis accuracy of bipolar disorder: a systematic review and meta-analysis. Frontiers in Psychiatry, 15. https://doi.org/10.3389/fpsyt.2024.1515549
Patel, K., Tripathy, A. K., Padhy, L. N., Kar, S. K., Padhy, S. K., & Mohanty, S. P. (2022). Accu-Help: A machine learning based smart healthcare framework for accurate detection of obsessive-compulsive disorder. arXiv preprint arXiv:2212.02346. https://arxiv.org/abs/2212.02346
Reinders, I. M. A., Cremers, G. R., van Rooijen, S. J., Leemans, J. C. & Perquin, C. W. (2022). The effect of an informative 360-degree virtual-reality video on anxiety for women visiting a one-stop clinic for abnormal uterine bleeding: A randomized controlled trial (VISION trial). European Journal of Obstetrics & Gynecology and Reproductive Biology, 272, 96-103. https://doi.org/10.1016/j.ejogrb.2022.02.179
Sadeh-Sharvit, S., Camp, T. D., Horton, S. E., Hefner, J. D., Berry, J. M., Grossman, E. & Hollon, S. D. (2023). Effects of an artificial intelligence platform for behavioral interventions on depression and anxiety symptoms: Randomized clinical trial. Journal of Medical Internet Research, 25, e46781. https://doi.org/10.2196/46781
Saranya, R., Singh, N. & Menon, V. (2024). Harnessing artificial intelligence for early detection and personalized treatment in mental health disorders: A scoping review. Psychiatry Research, 336, 114897. https://www.sciencedirect.com/journal/psychiatry-research
Shen, X., Zhang, Q., Zheng, H. & Qi, W. (2024). Harnessing XGBoost for robust biomarker selection of obsessive-compulsive disorder (OCD) from adolescent brain cognitive development (ABCD) data. arXiv preprint arXiv: 2407.00028. https://arxiv.org/abs/2407.00028
Stamatis, C. A., Meyerhoff, J., Meng, Y., Lin, Z. C. C., Cho, Y. M., Liu, T., Karr, C. J., Liu, T., Curtis, B. L., Ungar, L. H. & Mohr, D. C. (2024). Differential temporal utility of passively sensed smartphone features for depression and anxiety symptom prediction: A longitudinal cohort study. NPJ Mental Health Research, 3, 1. https://doi.org/10.1038/s44184-023-00041-y
Sun, S., Folarin, A. A., Zhang, Y., Cummins, N., Garcia-Dias, R., Stewart, C., Ranjan, Y., Rashid, Z., Conde, P., Laiou, P., Sankesara, H., Matcham, F., Leightley, D., White, K. M., Oetzmann, C., Ivan, A., Lamers, F., Siddi, S., Simblett, S., Nica, R., Rintala, A., Mohr, D. C., Myin-Germeys, I., Wykes, T., Haro, J. M., Penninx, B. W. J. H., Vairavan, S., Narayan, V. A., Annas, P., Hotopf, M., Dobson, R. J. B., RADAR-CNS, C. (2023). Challenges in Using mHealth Data From Smartphones and Wearable Devices to Predict Depression Symptom Severity: Retrospective Analysis. Journal of Medical Internet Research, 25, e45233. https://doi.org/10.2196/45233
Terhorst, Y., Messner, E. M., Opoku Asare, K., Montag, C., Kannen, C., & Baumeister, H. (2025). Investigating smartphone-based sensing features for depression severity prediction: Observation study. Journal of Medical Internet Research, 27, e55308. https://doi.org/10.2196/55308
Tong, A. C. Y., Wong, K. T. Y., Chung, W. W. T. & Mak, W. W. S. (2025). Effectiveness of topic-based chatbots on mental health self-care and well-being: Randomized controlled trial. Journal of Medical Internet Research, 27, e70436. https://doi.org/10.2196/70436
Tremain, H., McEnery, C., Fletcher, K. & Murray, G. (2020). The Therapeutic Alliance in Digital Mental Health Interventions for Serious Mental Illnesses: Narrative Review. JMIR Ment Health, 7(8). https://doi.org/10.2196/17204
Triantafyllidis, A. K., Velardo, C., Chantler, T., Shah, S. A., Paton, C., Khorshidi, R., ... & Tarassenko, L. (2020). A personalised mobile-based home monitoring system for heart failure: The SUPPORT-HF Study. International Journal of Medical Informatics, 141, 104147. https://doi.org/10.1016/j.ijmedinf.2015.05.003
Wasil, A. R., Gillespie, S., Patel, R., Petre, A., Venturo-Conerly, K. E., Shingleton, R. M., Weisz, J. R. & DeRubeis, R. J. (2020). A systematic evaluation of smartphone apps for the treatment of eating disorders and body dissatisfaction. Journal of Consulting and Clinical Psychology, 88(9), 774-783. https://doi.org/10.1037/ccp0000604
Yang, X. W. J., Ma, Y., Yu, J., Cao, H., Zeng, A., Fu, R., Tang, Y. & Ren, Z. (2025). Effectiveness of virtual reality technology interventions in improving social skills of children and adolescents with autism spectrum disorder: A systematic review. Journal of Medical Internet Research, 27, e60845. https://doi.org/10.2196/60845
Zhang, Z. & Wang, J. (2024). Can AI replace psychotherapists? Exploring the future of mental health care. Frontiers in Psychiatry, 15, 1444382. https://doi.org/10.3389/fpsyt.2024.1444382
Zhou, Y., Wang, X. & Liu, H. Dongju, L., Jaegwon, J., Yun, M. S., Chul-Hyun, C., Ji Won, Y., Taek, L., Jung-Been, L., Heon-Jeong, L. & Jae Kyoung, K. (2024). Accurately predicting mood episodes in mood disorder patients using sleep-wake data from wearables. npj Digital Medicine, 7, 133. https://doi.org/10.1038/s41746-024-01333-z

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.