Más allá del ruido: Cómo las fibras naturales están revolucionando la acústica
PDF
DOI

Palabras clave

Fibra
Acústica
Contaminación sonora
Materiales de construcción

Cómo citar

Estarrón Navarro, L., Victoria Martínez, U., & Loera-Serna, S. (2025). Más allá del ruido: Cómo las fibras naturales están revolucionando la acústica. Revista Latinoamericana De Difusión Científica, 7(13), 199-220. https://doi.org/10.5281/zenodo.15844308

Resumen

En las últimas dos décadas, el campo de investigación de fibras naturales como materiales acústicos se ha desarrollado considerablemente debido a la constante exposición al ruido en el mundo globalizado. El objetivo de este artículo es proporcionar una perspectiva sobre investigaciones relevantes del uso de fibras naturales y compositos con diferentes aditivos para aplicaciones acústicas. La metodología consistió en la revisión integral de trabajos que utilizan fibras y que demostraron que estás tienen propiedades acústicas deseables, como baja densidad y alta porosidad. Sin embargo, también se pone en evidencia que estos materiales presentan limitaciones importantes como baja resistencia al esfuerzo, termoestabilidad y absorción sonora para frecuencias por debajo de los 1000 Hz. Para remediar esto, también se han desarrollado compositos de fibras naturales con diferentes resultados y grados de éxito. Uno de los principales retos en el desarrollo de dichos compositos es la falta de homogeneidad y reproducibilidad de los materiales y de la respuesta acústica.

https://doi.org/10.5281/zenodo.15844308
PDF
DOI

Citas

Abdi, D. D., Monazzam, M., Taban, E., Putra, A., Golbabaei, F., & Khadem, M. (2021). Sound absorption performance of natural fiber composite from chrome shave and coffee silver skin. Applied Acoustics, 182, 108264, pp. 1-10. https://doi.org/10.1016/j.apacoust.2021.108264

ALRahman, L. A., Raja, R. I., & Rahman, R. A. (2013). Experimental study on natural fibres for green acoustic absorption materials. American Journal Of Applied Sciences, 10(10), pp. 1307-1314. https://doi.org/10.3844/ajassp.2013.1307.1314

Berardi, U., & Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building And Environment, 94, pp. 840-852. https://doi.org/10.1016/j.buildenv.2015.05.029

Bravo-Moncayo, L., Argotti-Gómez, M., Jara, O., Puyana-Romero, V., Ciaburro, G., & Guerrero, V. H. (2024). Thermo-Acoustic Properties of Four Natural Fibers, Musa textilis, Furcraea andina, Cocos nucifera, and Schoenoplectus californicus, for Building Applications. Buildings, 14(8), 2265, pp. 1-25. https://doi.org/10.3390/buildings14082265

Çelikel, D. C., & Babaarslan, O. (2017). Effect of Bicomponent Fibers on Sound Absorption Properties of Multilayer Nonwovens. Journal Of Engineered Fibers And Fabrics, 12(4), 155892501701200, pp. 15-25. https://doi.org/10.1177/155892501701200403

Chen, Y., Wu, F., Yu, Q., & Brouwers, H. (2020). Bio-based ultra-lightweight concrete applying miscanthus fibers: Acoustic absorption and thermal insulation. Cement And Concrete Composites, 114, 103829, pp. 1-12. https://doi.org/10.1016/j.cemconcomp.2020.103829

Das, P. P., Chaudhary, V., Ahmad, F., Manral, A., Gupta, S., & Gupta, P. (2022). Acoustic performance of natural fiber reinforced polymer composites: Influencing factors, future scope, challenges, and applications. Polymer Composites, 43(3), pp. 1221-1237. https://doi.org/10.1002/pc.26455

Hassan, T., Jamshaid, H., Mishra, R., Khan, M. Q., Petru, M., Novak, J., Choteborsky, R., & Hromasova, M. (2020). Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fibers Waste. Polymers, 12(3), 654, pp. 1-19. https://doi.org/10.3390/polym12030654

Hassanzadeh, S., Hasani, H., & Zarrebini, M. (2013). Analysis and prediction of the noise reduction coefficient of lightly-needled Estabragh/polypropylene nonwovens using simplex lattice design. Journal Of The Textile Institute, 105(3), pp. 256-263. https://doi.org/10.1080/00405000.2013.835903

Hoffmann, B., & Vienneau, D. (2024). At the heart of the matter: do we still underestimate noise effects on cardiovascular health? The Lancet Regional Health - Europe, 47, 101134, pp. 1-2. https://doi.org/10.1016/j.lanepe.2024.101134

Irvani, H., Mahabadi, H. A., Khavanin, A., & Variani, A. S. (2024). Determining the Sound Absorption Coefficient of Bamboo Composites: Theoretical- and Laboratory-based Approaches. International Journal Of Environmental Health Engineering, 13(1), pp. 1-7. https://doi.org/10.4103/ijehe.ijehe_4_24

Joshi, S., Drzal, L., Mohanty, A., & Arora, S. (2003). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A Applied Science And Manufacturing, 35(3), pp. 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016

Mamtaz, H., Fouladi, M. H., Al-Atabi, M., & Namasivayam, S. N. (2016). Acoustic Absorption of Natural Fiber Composites. Journal Of Engineering, 2016, pp. 1-11. https://doi.org/10.1155/2016/5836107

Mir, M., Nasirzadeh, F., Bereznicki, H., Enticott, P., Lee, S., & Mills, A. (2023). Construction noise effects on human health: Evidence from physiological measures. Sustainable Cities And Society, 91, 104470, pp. 1-11. https://doi.org/10.1016/j.scs.2023.104470

Mohammadi, M., Taban, E., Tan, W. H., Din, N. B. C., Putra, A., & Berardi, U. (2024). Recent progress in natural fiber reinforced composite as sound absorber material. Journal Of Building Engineering, 84, 108514, pp. 1-30. https://doi.org/10.1016/j.jobe.2024.108514

Möser, M. (2009). Engineering Acoustics. New York, Estados Unidos, 2a Edición, Springer Publishing, pp. 1-14. https://link.springer.com/book/10.1007/978-3-662-05391-1

Norma Oficial Mexicana NOM-081-ECOL-1994. Secretaría de Desarrollo Social. (1994). Que establece los límites máximos permisibles de emisión de ruido de las fuentes fijas y su método de medición. https://www.dof.gob.mx/nota_detalle.php?codigo=4866673&fecha=13/01/1995#gsc.tab=0

Ouakarrouch, M., Bousshine, S., Bybi, A., Laaroussi, N., & Garoum, M. (2022). Acoustic and thermal performances assessment of sustainable insulation panels made from cardboard waste and natural fibers. Applied Acoustics, 199, 109007, pp. 1-15. https://doi.org/10.1016/j.apacoust.2022.109007

Pai, A., Shah, K. M., Namezeno, P., Bala, A., Gowrishankar, M. C., & Hegde, S. (2024). Effect of elastomeric filler content on the acoustic and mechanical response of natural fiber-based hybrid composites. Journal Of The Brazilian Society Of Mechanical Sciences And Engineering, 46(4), pp. 1-14. https://doi.org/10.1007/s40430-024-04748-7

Peng, L., Song, B., Wang, J., & Wang, D. (2015). Mechanic and Acoustic Properties of the Sound-Absorbing Material Made from Natural Fiber and Polyester. Advances In Materials Science And Engineering, 2015, pp. 1-5. https://doi.org/10.1155/2015/274913

Rowell, R. M. (1998). Property Enhanced Natural Fiber Composite Materials Based on Chemical Modification. En Springer eBooks, pp. 717-732. https://doi.org/10.1007/978-1-4899-0112-5_63

Sambandamoorthy, S., Narayanan, V., Chinnapandi, L. B. M., & Aziz, A. (2020). Impact of fiber length and surface modification on the acoustic behaviour of jute fiber. Applied Acoustics, 173, 107677, pp. 1-9. https://doi.org/10.1016/j.apacoust.2020.107677

Sekar, V., Palaniyappan, S., Noum, S. y. E., Putra, A., Sivanesan, S., & Sheng, D. D. C. V. (2023). Acoustic absorbers made of wood fiber composites developed by compression molding and additive manufacturing. Wood Research, 68(1), pp. 68-82. https://doi.org/10.37763/wr.1336-4561/68.1.6882

Sivanantham, G., Vijaya, G. S., Murugan, A., Selvaraj, S., Thangavelu, K., Mani, S. K., Marappan, S. S., Sunitha, S. S. E., & Geetha, V. P. (2024). Characterization and physicochemical properties of lignocellulosic fibers from Fishtail Palm (Caryota mitis) Leaf Stalks. Composites And Advanced Materials, 33, pp. 1-12.
https://doi.org/10.1177/26349833241256968

Sun, Y., Xu, Y., Li, W., & Yue, X. (2024). Functional modification of softwood fiber and its application in natural fiber-based sound-absorbing composite. Industrial Crops And Products, 218, 119044, pp. 1-12. https://doi.org/10.1016/j.indcrop.2024.119044

Taban, E., Tajpoor, A., Faridan, M., Samaei, S. E., & Beheshti, M. H. (2019). Acoustic Absorption Characterization and Prediction of Natural Coir Fibers. Acoustics Australia, 47(1), 67-77. https://doi.org/10.1007/s40857-019-00151-8

Victoria-Martínez, U., Loera-Serna, S., & Vázquez-Cerón, E. R. (2022). Composites of bentonite mixed with natural fibers as acoustic absorption material. Science Talks, 4, 100078, pp. 1-8. https://doi.org/10.1016/j.sctalk.2022.100078

Welch, D., Shepherd, D., Dirks, K. N., & Reddy, R. (2023). Health effects of transport noise. Transport Reviews, 43(6), 1190-1210. https://doi.org/10.1080/01441647.2023.2206168

Widjanarti, M. P., Probandari, A., Sumardiyono, & Sunarto. (2023). The Acoustic Performance of Natural Composites in Reducing Stress Levels: Textile Industry. Civil Engineering Journal, 9(6), pp. 1312-1328. https://doi.org/10.28991/cej-2023-09-06-02

WHO. (2022). World Health Organization. La OMS publica una nueva norma para hacer frente a la creciente amenaza de la pérdida de audición. https://www.who.int/es/news/item/02-03-2022-who-releases-new-standard-to-tackle-rising-threat-of-hearing-loss

WHO. (2024). World Health Organization. Compendium of WHO and other UN guidance in health and environment, 2024 update. World Health Organization. https://www.who.int/publications/i/item/9789240095380

Zulkarnain, M., Harny, I., Insdrawaty, M. I., Azman, M. I. F., Azmi, M. I. A., & Kusrini, E. (2024). Study on Nature Fiber Composite for Noise Material Control. International Journal Of Technology, 15(3), 618, pp. 1-10. https://doi.org/10.14716/ijtech.v15i3.6442
Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.

Descargas

La descarga de datos todavía no está disponible.