Resumen
A la fecha se han empleado diferentes métodos basados en la estructura para cuantificar las interacciones receptor-ligando, y a partir de estas predecir la energía libre de asociación que proporcionara un estimado de la afinidad de un compuesto por una diana terapéutica. Entre estos métodos está el acoplamiento molecular y las simulaciones de dinámica molecular en conjunto con métodos de cálculo de energía libre de asociación. El acoplamiento molecular, aunque tiene un alto potencial selectivo posee un éxito limitado en la precisión de la estimación de la energía de solvatación y consideración de cambios en la entropía conformacional. Por lo tanto, se ha recurrido a técnicas computacionales más eficientes que predicen la energía libre de unión de una manera más precisa, como lo son los métodos que combinan mecánica molecular con métodos de cálculo de energía. En este contexto, los métodos MMPBSA y MMGBSA permiten predecir la energía libre de unión usando mecánica molecular y modelos continuos de solvatación implícita. Estas técnicas han facilitado la identificación de diferentes compuestos con alta afinidad por una diana farmacológica. En este artículo científico describiremos las bases fundamentales de los métodos MMPBSA y MMGBSA, así como algunos avances relacionados con el empleo de ambos métodos.
Citas
Archontis, G.; Simonson T.; Karplus M. (2001). Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. J Mol Biol., 306 (2), 307-327. doi: 10.1006/jmbi.2000.4285
Bello, M.; Martinez-Archundia, M.; Correa-Basurto, J. (2013). Automated docking for novel drug discovery. Expert Opinion on Drug Discovery, 8, 821-834. doi: 10.1517/17460441.2013.794780
Bello, M.; Guadarrama-García, C.; Rodriguez-Fonseca, R. A (2020). Dissecting the molecular recognition of dual lapatinib derivatives for EGFR/HER2. J Comput Aided Mol Des. 2020 Mar;34(3):293-303. doi: 10.1007/s10822-019-00270-4
Beveridge, D. L.; Dicapua, F. M. (1989). Free-Energy Via Molecular Simulation - Applications to Chemical and Biomolecular Systems. Annu. Rev. Biophys. Biomol. Struct., 18, 431-492. doi: 10.1146/annurev.bb.18.060189.002243
Boresch, S.; Bruckner, S. (2011). Avoiding the van der Waals endpoint problem using serial atomic insertion. Journal of Computational Chemistry, 32, 11, 2449-2458. doi: 10.1002/jcc.21829
Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M. (2003). Absolute binding free energies: A quantitative approach for their calculation. Journal of Physical Chemistry B, 107, 35, 9535-9551. DOI:10.1021/JP0217839
Brooks, B.R.; Janezic, D.; Karplus M. (1995). Harmonic-analysis of large systems. 1. Methodology. J. Comput. Chem., 16, 1522-1542. https://doi.org/10.1002/jcc.540161209
Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668-1688. doi: 10.1002/jcc.20290
Cornell, W.D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman P. A. (1995). A second generation forcefield for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 19, 5179-5197. https://doi.org/10.1021/ja00124a002
Crean, R. M.; Pudney, C. R.; Cole, D. K.; Van der Kamp, M. W. (2022). Reliable in silico ranking of engineered therapeutic TCR binding affinities with MMPB/GBSA. Journal of chemical information and modeling, 62(3), 577-590. doi: 10.1021/acs.jcim.1c00765
Cruz-Monteagudo, M.; Medina-Franco, J. L.; Pérez-Castillo, Y.; Nicolotti, O.; Cordeiro, M. N., et al. (2014). Activity cliffs in drug discovery: Dr. Jekyll or Mr. Hyde? Drug Discovery Today, 19, 1069-1080. doi: 10.1016/j.drudis.2014.02.003
Deng, Y.; Roux, B. (2009). Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B., 113 (8), 2234-2246. doi: 10.1021/jp807701h
Du, J.; Sun, H.; Xi, L.; Li, J.; Yang, Y.; Liu, H.; Yao, X. (2011). Molecular modeling study of Checkpoint Kinase 1 inhibitors by multiple docking strategies and Prime/MMGBSA. Journal of Computational Chemistry, 32, 13, 2800-2808. DOI: 10.1002/jcc.21859
Genheden, S.; Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov., 10(5), 449-461. doi: 10.1517/17460441.2015.1032936
Gilson, M. K.; Zhou, H. X. (2007). Calculation of protein-ligand binding affinities. Annu Rev of Biophys Biomol Struct, 36, 21-42. doi: 10.1146/annurev.biophys.36.040306.132550
Harvey, M. J.; Giupponi, G.; De Fabritiis, G. (2009). ACEMD: Accelerating biomolecularsimulations in the microsecond time scale. Journal of Chemical Theory & Computation, 5, 6, 1632-1639. doi: 10.1021/ct9000685
Hayes, J. M.; Leonidas, D. D. (2010). Computation as a tool for glycogen phosphorylase inhibitor design. Mini Reviews in Medicinal Chemistry, 10, 12, 1156-1174. doi: 10.2174/1389557511009011156
Hayes, J. M.; Skamnaki, V. T.; Archontis, G.; Lamprakis, C.; Sarrou, J.; Bischler, N.; Skaltsounis, A. L.; Zographos, S. E.; Oikonomakos, N. G. (2011). Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: The role of water molecules examined. Proteins., 79 (3), 703-719. doi: 10.1002/prot.22890
Hou, X. B.; Du, J. T.; Zhang, J.; Du, L. P.; Fang, H.; Li, M. Y (2013). How to Improve Docking Accuracy of Autodock4.2: A Case Study Using Different Electrostatic Potentials. J. Chem. Inf. Model., 53, 188−200. doi: 10.1021/ci300417y
Karplus, M.; Kushick, J. N. (1981). Method for estimating the configurational entropy of macromolecules. Macromolecules, 14, 2, 325-332. https://doi.org/10.1021/ma50003a019
Kirkwood, J. G. (1935). Statistical mechanics of fluid mixtures. Journal of Chemical Physics, 3, 5, 300-313. https://doi.org/10.1063/1.1749657
Kollman, P. (1993). Free energy calculations: Applications to chemical and biochemical phenomena. Chem. Rev., 93 (7), 2395-2417. https://doi.org/10.1021/cr00023a004
Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 33 (12), 889-897. https://doi.org/10.1021/ar000033j
Konecny, G. E.; Pegram, M. D.; Venkatesan, N.; Finn, R.; Yang, G. (2006). Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66:1630-1639. doi: 10.1158/0008-5472.CAN-05-1182
Lavecchia, A.; di Giovanni, C. (2013). Virtual screening strategies in drug discovery: A critical review. Current Medicinal Chemistry, 20, 2839-2860. doi: 10.2174/09298673113209990001
Lee, M. S.; Olson, M. A. (2006). Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophysical Journal, 90, 3, 864-877. doi: 10.1529/biophysj.105.071589
Li, Y.; Shen, J.; Sun, X.; Li, W.; Liu, G.; Tang, Y. (2010). Accuracy Assessment of Protein-Based Docking Programs against RNA Targets. J. Chem. Inf. Model, 50, 1134−1146. doi: 10.1021/ci9004157
Lyu, A.; Lei, F.; Shaohua, G. (2014). Design and synthesis of Lapatinib derivatives containing a branched side chain as HER1/HER2 targeting antitumor drug candidates. Eur J Med Chem., 87, 631-642. doi: 10.1016/j.ejmech.2014.10.006.
MacKerell, A.D.; Bashford, D.; Bellott M.; Dunbrack, Jr.; R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhorn, B.; Reiher, III, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B.102., 18, 3586-3616. https://doi.org/10.1021/jp973084f
Maggiora, G. M. (2006). On outliers and activity cliffs-why QSAR often disappoints. Journal of Chemical Inforation and Modeling, 46, 1535. https://doi.org/10.1021/ci060117s
Meng, Y.; Sabri Dashti, D.; Roitberg, A. E (2011). Computing Alchemical Free Energy Differences with Hamiltonian Replica Exchange Molecular Dynamics (H-REMD) Simulations. J. Chem. Theory Comput., 7, 2721−2727. doi: 10.1021/ct200153u
Mobley, D. L.; Graves, A. P.; Chodera, J. D.; McReynolds, A. C.; Shoichet, B. K.; Dill, K. A. (2007). Predicting absolute binding free energies to a simple model site. Journal of Molecular Biology., 371, 4, 1118-1134. doi: 10.1016/j.jmb.2007.06.002
Oates, J.; Jakobsen, B.K. (2013). ImmTACs: Novel bi-specific agents for targeted cancer therapy. Oncoimmunology. 1, 2(2):e22891. doi: 10.4161/onci.22891
Polydoridis, S.; Leonidas, D. D.; Oikonomakos, N. G.; Archontis G. (2007). Recognition of ribonuclease A by 3’-5’-pyrophosphate-linked dinucleotide inhibitors: A molecular dynamics/continuum electrostatics analysis. Biophys J., 92(5), 1659-1672. doi: 10.1529/biophysj.106.093419
Rocchia, W.; Alexov, E.; Honig, B. (2001). Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions. J. Phys. Chem. B., 105, 6507-6514. DOI:10.1021/JP010454Y
Rusnak, D.W.; Lackey, K.; Affleck, K. (2001). The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther., 1(2), 85-94.
Straatsma, T. P.; McCammon J. A. (1992). Computational alchemy. Annual Review of Physical Chemistry., 43, 407-435. https://doi.org/10.1146/annurev.pc.43.100192.002203
Stone, J. E., Hardy, D. J., Isralewitz, B., y Schulten, K. (2011). Chapter 16: GPU algorithms for molecular modeling. In: Scientific Computing with Multicore & Accelerators, Dongarra J.; Bader J.A & Kurzak J., pp. (351-371), Chapman & Hall/CRC Press, ISBN 9781439825365.
Stumpfe, D.; Hu, Y.; Dimova, D., Bajorath, J. (2016). Recent Progress in Understanding Activity Cliffs and Their Utility in Medicinal Chemistry. J Med Chem., 57: 18- 28. https://doi.org/10.1021/jm401120g
Suzuki, T., Motohashi, H., Yamamoto, M. (2013). Toward Clinical Application of the Keap1−Nrf2 Pathway. Trends Pharmacol. Sci., 34, 340−346. doi: 10.1016/j.tips.2013.04.005
Tidor, B.; Karplus, M. (1994). The contribution of vibrational entropy to molecular association – the dimerization of insulin. J Mol Biol., 238(3), 405-414. doi: 10.1006/jmbi.1994.1300
Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Molecular Informatics, 29, 476-488. doi: 10.1002/minf.201000061
Van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krueger, P., Mark, A. E., Scott, W. R. P., y Tironi, I. G. (1996). Biomolecular Simulation: The GROMOS96 Manual and User Guide; vdf Hochschulverlag AG an der ETH Zürich and BIOMOS b.v. Zürich, Groningen.
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. (2005). GROMACS: fast, flexible, and free. J. Comput. Chem., 26, 1701-1718. doi: 10.1002/jcc.20291
Wang, E.; Fu, W.; Jiang, D.; Sun, H.; Wang, J.; Zhang, X.; Weng, G.; Liu, H.; Tao, P.; Hou. T. (2021). VAD-MM/GBSA: A Variable Atomic Dielectric MM/GBSA Model for Improved Accuracy in Protein-Ligand Binding Free Energy Calculations. J Chem Inf Model. 28, 61(6), 2844-2856. doi: 10.1021/acs.jcim.1c00091
Wang, J.M.; Hou, T.J.; Xu, X.J. (2006). Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr. Comput. Aided Drug Des., 2 (3), 287-306. DOI: 10.2174/157340906778226454
Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. (2016). Comprehensive Evaluation of Ten Docking Programs on a Diverse Set of Protein−Ligand Complexes: The Prediction Accuracy of Sampling Power and Scoring Power. Phys. Chem. Chem. Phys., 18, 12964−12975. DOI: 10.1039/c6cp01555g
Wang, Z.; Pan, H.; Sun, H.; Kang, Y.; Liu, H.; Cao, D.; Hou, T. (2022). fastDRH: a webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB(GB)SA computation. Brief Bioinform. 20, 23(5):bbac201. doi: 10.1093/bib/bbac201
Wang, Z.; Wang, X.; Li, Y.; et al (2019). farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics. 35, 1777-9. doi: 10.1093/bioinformatics/bty879
Weng, G.; Wang, E.; Wang, Z.; Liu, H.; Zhu, F.; Li, D.; Hou, T. (2019). HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res. 2;47(W1), W322-W330. doi: 10.1093/nar/gkz397
Wu, D.; Zheng, X.; Liu, R.; Li, Z.; Jiang, Z.; Zhou, Q.; Huang, Y.; Wu, X. N.; Zhang, C.; Huang, Y. Y.; Luo, H. B. (2022). Free energy perturbation (FEP)-guided scaffold hopping. Acta Pharm Sin B. 2(3), 1351-1362. doi: 10.1016/j.apsb.2021.09.027
Yang, C. Y.; Sun, H.; Chen, J.; Nikolovska-Coleska, Z.; Wang, S. (2009). Importance of ligand reorganization free energy in protein-ligand binding affinity prediction. J Am Chem Soc., 131(38), 13709-13721. doi: 10.1021/ja9039373
Yu, Y.; Wang, Z.; Wang, L.; Tian, S.; Hou, T.; Sun, H. (2022). Predicting the mutation effects of protein-ligand interactions via end-point binding free energy calculations: strategies and analyses. J Cheminform. 20, 14(1), 56. doi: 10.1186/s13321-022-00639
Zhong, S.; Huang, K.; Luo, S.: Dong, S.; Duan, L. (2020). Improving the performance of the MM/PBSA and MM/GBSA methods in recognizing the native structure of the Bcl-2 family using the interaction entropy method. Physical Chemistry Chemical Physics. 22(7), 4240-4251. doi: 10.1039/c9cp06459a
Zwanzig, R. W. (1954). High-temperature equation of state by a perturbation method. I. Nonpolar gases. Journal of Chemical Physics. 8, 1420-1426. https://doi.org/10.1063/1.1740409
Copyright
La Revista Latinoamericana de Difusión Científica declara que reconoce los derechos de los autores de los trabajos originales que en ella se publican; dichos trabajos son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y comparten sin propósitos comerciales, según la licencia adoptada por la revista.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional