Resumen
En la actualidad, la tecnología ha incrementado considerablemente la generación global de información digital. En el ámbito de la salud, esta información corresponde a expedientes médicos, los cuales son de carácter confidencial y deben resguardarse de manera segura, permitiendo su acceso únicamente al personal autorizado. Su volumen, complejidad y sensibilidad plantean desafíos técnicos, éticos y legales. De esta manera, el objetivo de este artículo es ofrecer una visión general de los principales retos que surgen en la organización y administración de grandes conjuntos de datos en el ámbito biomédico. Para ello, la metodología se fundamentó en el desarrollo de una solución de almacenamiento de información digital biomédica llamada Biobanco de la Alcaldía Iztapalapa. Esta plataforma se concibe como un modelo integral, confiable y sostenible para la gestión responsable de información poblacional destinada a la investigación y al desarrollo científico. Como resultado, se realizó la implementación de un modelo de gestión que prioriza la protección ética de la información, asegura su calidad científica y establece protocolos para un uso responsable. Este marco garantiza la privacidad de los pacientes y permite emplear los datos de forma segura para identificar riesgos sanitarios en la población.
Citas
Alkhatib R, Gaede KI. (2024). Data Management in Biobanking: Strategies, Challenges, and Future Directions, BioTech (Basel) 2;13(3):34. doi: 10.3390/biotech13030034
Ayaz M, Pasha MF, Alzahrani MY, Budiarto R, Stiawan D. (2021). The Fast Health Interoperability Resources (FHIR) Standard: Systematic Literature Review of Implementations, Applications, Challenges and Opportunities,.9(7):e21929. doi: 10.2196/21929
Bahcall, O.G. (2018). UK Biobank — a new era in genomic medicine, Nat Rev Genet 19, 737, https://doi.org/10.1038/s41576-018-0065-3
Bakr Kamel, A.A., Belal, N.A., and El-Sonbaty, Y. (2023). A Novel Computational Method for Predicting DNA Methylation Sites within WGBS of Chromosome Y with WGS Data and Illumina Array Data, pages. 57-63, doi: 10.1109/ICCTA60978.2023.10969268
Bomewar, M., Baraskar, T., and Mankar, V. (2015), DICOM image size reduction and data embedding using randomization technique, International Conference on Pervasive Computing (ICPC), pages. 1-6, doi: 10.1109/PERVASIVE.2015.7087166
Brudfors, M., Graham, M,. Ryu, H., and Kutter, O. (2024). Monai for Deep-Learning Based CBCT Reconstruction, pages 75-76, doi: 10.1109/ICASSPW62465.2024.10626056
Bukreeva, Anastasiia & Malsagova, Kristina & Petrovskiy, Denis & Butkova, Tatiana & Nakhod, Valeriya & Rudnev, Vladimir & Izotov, Alexander & Kaysheva, A.. (2024). Biobank Digitalization: From Data Acquisition to Efficient Use, Biology. pages. 13- 957, DOI: 10.3390/biology13120957
Byron, J., Long, D.D.E., and Miller, E.L. (2018), Using Simulation to Design Scalable and Cost-Efficient Archival Storage Systems, pages. 25-39, doi: 10.1109/MASCOTS.2018.00011
Coughlin, T., y Hoyt, R. (2024). La Hoja de Ruta del IEEE describe el desarrollo de la tecnología de almacenamiento digital masivo, vol. 57, n.º 09, págs. 111-116, doi: 10.1109/MC.2024.3416230
Dandu RV (2008), Storage media for computers in radiology. Indian J Radiol Imaging, 18(4): 287-9. doi: 10.4103/0971-3026.43838
Diaz-Pinto, Andrés, Sachidanand, Alle, Et. al.,(2024), MONAI Label: A framework for AI-assisted interactive labeling of 3D medical images, Volume 95, https://doi.org/10.1016/j.media.2024.103207
Eli Gibson; Li, V.; Sudre, Carole Et. Al (2018). NiftyNet: a deep-learning platform for medical imaging, Computer Methods and Programs in Biomedicine, Volume 158, Pages 113-122, https//doi.org/10.1016/j.cmpb.2018.01.025
Fadhil, Jawaher & Zeebaree, Subhi. (2024). Blockchain for Distributed Systems Security in Cloud Computing: A Review of Applications and Challenges, vol 13. pages.1576-1605, https://doi.org/10.33022/ijcs.v13i2.3794
Gadiraju, P., Naayini, P., Somayajula, R., and Aunugu, D.R. (2025). Federated-Aware Cluster Computing for Resilient and Scalable Machine Learning, pages. 1-7, doi: 10.1109/ICOCT64433.2025.11118503
Giese, T., and Anderl, R. (2022), Maintaining Control over Distributed Data Through a Data Sovereignty Model, pages. 1-7, doi: 10.1109/ICITDA55840.2022.9971218
Hernaez, M., Pavlichin, D., Weissman, T. & Ochoa, I. (2019). Genomic data compression, Annu. Rev. Biomed. Data Sci. 2, pages. 19–37. https://doi.org/10.1146/annurev-biodatasci-072018-021229
Hsu, Y.F., Irie, R., Murata, S. and Matsuoka, M. (2018). A Novel Automated Cloud Storage Tiering System through Hot-Cold Data Classification", pages. 492-499, doi: 10.1109/CLOUD.2018.00069
Jonathan M. Mudge, Sílvia Carbonell-Sala (2025), GENCODE 2025: reference gene annotation for human and mouse, Vol 53, pages. D966–D975, DOI: 10.1093/nar/gkae1078
Juozapaitė, D, et al. (2023). The COVID-19 pandemic reveals the wide-ranging role of biobanks, Frontiers in Public Health, pages. 1-11, doi: 10.3389/fpubh.2023.125660
Kushwaha, N., Roguski, P., and Watson, B.W. (2020. Up in the Air: Ensuring Government Data Sovereignty in the Cloud”, pages. 43-61, doi: 10.23919/CyCon49761.2020.9131718
Leila Namvari-Tazehkand, Saeid Pashazadeh, (2021). Investigating the Reliability in Three RAID Storage Models and Effect of Ordering Replicas on Disks, https://doi.org/10.48550/arXiv.2104.01238
Malone, J.H., Oliver, B.(2011). Microarrays, deep sequencing and the true measure of the transcriptome, https://doi.org/10.1186/1741-7007-9-34
Mark A. Lantz, Simeon Furrer, Martin Petermann, Hugo Rothuizen, Stella Brach, Luzius Kronig, Ilias Iliadis, Beat Weiss, Ed R. Childers, and David Pease. (2025), Magnetic Tape Storage Technology. ACM Trans. Storage, Volume 21, pages. 1-70, https://doi.org/10.1145/3708997
Marta Różańska and Kyriakos Kritikos (2019), Good Bye Vendor Lock-in: Getting your Cloud Applications Multi-Cloud Ready!, pages. 171–173. https://doi.org/10.1145/3368235.3370267
Müller, Heimo & Reihs, Robert, Et. Al. (2015). State-of-the-Art and Future Challenges in the Integration of Biobank Catalogues, pages 3-11,doi: 10.1007/978-3-319-16226- 3_11
Nadaf, R., Sumangala, N.B., Mandi, M., and Konnur, A. (2023). Symmetric and Asymmetric Cryptographic Approach based Security Protocol for Key Exchange", pages. 1-6, doi: 10.1109/ICAISC58445.2023.10200989
Naranjo-Martínez, Y., Zaldívar-Revé, C., & González-Chaveco. (2022). Sistema de Gestión de la Información de Laboratorios en BioCubaFarma / Laboratory Information Management System. 28(4), pages. 1-10,doi: 10.22201/fesc.20075057e.2022.28.4
Navaneethan, S., Hemanth, G., and Nikilkumar, R. (2024), Leveraging NVIDIA Clara for Real-Time Cardiac Image Segmentation and Diagnosis", pages. 1-7, doi: 10.1109/ICSES63760.2024.10910358
Nicholas Bradley Larson, Ann L. Oberg, Alex A. Adjei, Liguo Wang (2023). A Clinician’s Guide to Bioinformatics for Next-Generation Sequencing, Journal of Thoracic Oncology, Volume 18, Issue 2, Pages 143-157, ISSN 1556-0864, https://doi.org/10.1016/j.jtho.2022.11.006
Núñez-Gaona MA, Marcelín-Jiménez R, Gutiérrez-Martínez J, Aguirre-Meneses H, Gonzalez-Compean JL. (2018), A Dependable Massive Storage Service for Medical Imaging. (5):628-639. doi: 10.1007/s10278-018-0091-x
Opara-Martins, J., Sahandi, R., & Tian, F. (2014). Critical review of vendor lock-in and its impact on adoption of cloud computing, vol. 5, pages. 92-97, doi: 10.1109/i- Society.2014.7009018
Opara-Martins, J., Sahandi, R., & Tian, F. (2016). Critical analysis of vendor lock-in and its impact on cloud computing migration: a business perspective, 5(1), 4, https://doi.org/10.1186/s13677-016-0054-z
Păscuțoiu, O., Tache Ungureanu, M.D., Teodor, C.I., Moraru, S. A. (2025). Enhancing DICOM Security in Medical Imaging Networks Using Software-Defined Networking, pages. 1-7, doi: 10.1109/ECAI65401.2025.11095443
Priya, B., Deepan, N. (2023). A Web-based Dicom Image and Plane Viewer, pages. 1- 7, doi: 10.1109/ICECCT56650.2023.10179664
Raghavan, B., and Schneier, B. (2023). A Bold New Plan for Preserving Online Privacy and Security: Decoupling our identities from our data and actions could safeguard our secrets in the cloud", vol. 60, pages. 22-29, doi: 10.1109/MSPEC.2023.10352412
Roberta Gazzarata, Joao Almeida, (2024). HL7 Fast Healthcare Interoperability Resources (HL7 FHIR) in digital healthcare ecosystems for chronic disease management: Scoping review, International Journal of Medical Informatics, Vol. 189, 2024, pages. 1-11, https://doi.org/10.1016/j.ijmedinf.2024.105507
Sankaranarayanan, S. et al. (2024): Enhancing Healthcare Imaging Security: Color Secret Sharing Protocol for the Secure Transmission of Medical Images, vol. 12, pages. 100200-100216, doi: 10.1109/ACCESS.2024.3426935
Scapicchio C, Gabelloni M, Forte SM, Alberich LC, Faggioni L, Borgheresi R, Erba P, Paiar F, Marti-Bonmati L, Neri E.(2021). DICOM-MIABIS integration model for biobanks: a use case of the EU PRIMAGE project, Eur Radiol Exp. 12;5(1):20. doi: 10.1186/s41747-021-00214-4. PMID: 33977357; PMCID: PMC8113005
Seebode, C., Ort, M., Hufnagl, P., and Regenbrecht, C. R. A. (2015). Next generation biobanks, pages. 1362-1367, doi: 10.1109/BigData.2015.7363896
Vaheedbasha Shaik, Natarajan K. (2024). Cloud databases: A resilient and robust framework to dissolve vendor lock-in, Software Impacts, Volume 21, pages. 1-5, https://doi.org/10.1016/j.simpa.2024.100680
Watts, Geoff (2012). UK Biobank opens its data vaults to researchers, BMJ. 344: e2459. doi:10.1136/bmj.e2459. ISSN 1756-1833
Wylot, Marcin & Hauswirth, Manfred & Cudre-Mauroux, Philippe & Sakr, Sherif. (2018). RDF Data Storage and Query Processing Schemes: A Survey, Volume 51. pages. 1-36, doi: 10.1145/3177850
Yujie Lian, Rui Geng, and Deqiang Zhu. (2025). Whole-Genome Sequencing and Comparative Genomic Analysis of a Selenium-Enriched Saccharomyces cerevisiae Strain, pages. 235–241, https://doi.org/10.1145/3745034.3745071
Zhou, J., Chen, Y., Zheng, M., and Wang, W. (2023), Data Distribution for Heterogeneous Storage Systems, vol. 72, no. 6, pages. 1747-1762, doi: 10.1109/TC.2022.3223302.

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.
