Resumen
Este trabajo recopila y analiza los últimos reportes sobre los elementos de tierras raras, reflexionando sobre su importancia estratégica, aplicaciones tecnológicas, criticidad y riesgos asociados a su suministro. El trabajo consistió en una revisión bibliográfica de literatura científica, informes técnicos y reportes de organismos internacionales, considerando aspectos importantes como, abundancia, las limitaciones para su explotación, la distribución geopolítica de la producción y el creciente interés por fuentes secundarias. Los resultados evidencian que, los elementos de tierras raras no son escasos, presentan una elevada criticidad debido al limitado número de productores, y a la concentración de la producción por China, que concentra más del 80 % del mercado global. Su relevancia se manifiesta en aplicaciones indispensables para la industria tecnológica, en especial en dispositivos electrónicos, lo que ha convertido su disponibilidad en un indicador de poder económico y geopolítico. Finalmente, la revisión destaca el desarrollo de estrategias alternativas como la minería urbana, entendida como la recuperación de estos metales a partir de residuos eléctricos y electrónicos, propuesta que surge como vía complementaria para mitigar los riesgos de suministro.
Citas
Andersson, M., Ljunggren Söderman, M., & Sandén, B. A. (2019). Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling. Resources Policy, 63. doi: 10.1016/j.resourpol.2019.101403
Balaram, V. (2019a). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4). doi: 10.1016/j.gsf.2018.12.005
Balaram, V. (2019b). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285–1303. doi: 10.1016/j.gsf.2018.12.005
Barmettler, F., Castelberg, C., Fabbri, C., & Brandl, H. (2016). Microbial mobilization of rare earth elements (Ree) from mineral solids—a mini review. In AIMS Microbiology (Vol. 2, Issue 2). doi: 10.3934/MICROBIOL.2016.2.190
Barrat, J. A., & Bayon, G. (2024). Practical guidelines for representing and interpreting rare earth abundances in environmental and biological studies. In Chemosphere (Vol. 352). doi: 10.1016/j.chemosphere.2024.141487
Bedekar, V., Morway, E. D., Langevin, C. D., & Tonkin, M. J. (2016). MT3D-USGS version 1: A U.S. Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW. In Groundwater Resources Program.
Belkhouche, N. E., & Didi, M. A. (2010). Extraction of Bi(III) from nitrate medium by D2EHPA impregnated onto Amberlite XAD-1180. Hydrometallurgy, 103(1–4). doi: 10.1016/j.hydromet.2010.02.015
Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013). Recycling of rare earths: A critical review. In Journal of Cleaner Production (Vol. 51). doi: 10.1016/j.jclepro.2012.12.037
Binnemans, K., Jones, P. T., Müller, T., & Yurramendi, L. (2018a). Rare Earths and the Balance Problem: How to Deal with Changing Markets? In Journal of Sustainable Metallurgy (Vol. 4, Issue 1). doi: 10.1007/s40831-018-0162-8
Binnemans, K., Jones, P. T., Müller, T., & Yurramendi, L. (2018b). Rare Earths and the Balance Problem: How to Deal with Changing Markets? In Journal of Sustainable Metallurgy (Vol. 4, Issue 1). doi: 10.1007/s40831-018-0162-8
Binnemans, K., Jones, P. T., Müller, T., & Yurramendi, L. (2018c). Rare Earths and the Balance Problem: How to Deal with Changing Markets? In Journal of Sustainable Metallurgy (Vol. 4, Issue 1). doi: 10.1007/s40831-018-0162-8
Brewer, A., Dror, I., & Berkowitz, B. (2022). Electronic waste as a source of rare earth element pollution: Leaching, transport in porous media, and the effects of nanoparticles. Chemosphere, 287. doi: 10.1016/j.chemosphere.2021.132217
Echeverri L, F., & Parra B., J. J. (2019). Los lantánidos: ni tierras ni raras. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(167). doi: 10.18257/raccefyn.917
European Commission. (2017). Methodology for establishing the EU list of Critical Raw Materials. Publications Office of the European Union.
Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of Environmental Management, 240. doi: 10.1016/j.jenvman.2019.04.002
Gaustad, G., Williams, E., & Leader, A. (2021). Rare earth metals from secondary sources: Review of potential supply from waste and byproducts. In Resources, Conservation and Recycling (Vol. 167). doi: 10.1016/j.resconrec.2020.105213
Giese, E. C. (2022). E-waste mining and the transition toward a bio-based economy: The case of lamp phosphor powder. MRS Energy and Sustainability, 9(2). doi: 10.1557/s43581-022-00026-y
Guo, C. (2020). 70 años de los estudios latinoamericanos en China: una perspectiva del desarrollo institucional. Orientando, 19. doi: 10.25009/orientando.v0i19.2639
Han, K. N. (2020). Characteristics of precipitation of rare earth elements with various precipitants. Minerals, 10(2). doi: 10.3390/min10020178
Han, K. N. (2021). Editorial for special issue “leaching of rare earth elements from various sources.” In Minerals (Vol. 11, Issue 2). doi: 10.3390/min11020164
İnan, S., Tel, H., Sert, Çetinkaya, B., Sengül, S., Özkan, B., & Altaş, Y. (2018). Extraction and separation studies of rare earth elements using Cyanex 272 impregnated Amberlite XAD-7 resin. Hydrometallurgy, 181. doi: 10.1016/j.hydromet.2018.09.005
Ishida, S., Suzuki, S., Hayano, T., Furuno, H., & Inanaga, J. (2006). Heterogeneous catalysis of novel polymeric rare earth complexes under solvent-free conditions: Zero-emission synthesis of β-amino alcohols. Journal of Alloys and Compounds, 408–412, 441–443. doi: 10.1016/j.jallcom.2004.12.079
Johnson, P. R. (2017). Mineral Deposits of North Africa (Mohammed Bouabdellah and John F. Slack, eds.). Economic Geology, 112(8). doi: 10.5382/econgeo.112.8.br02
Kiran, R., Kamath, N., Sayyed, M. I., Almuqrin, A. H., & Kamath, S. D. (2025a). A review of recent developments in rare earth-doped nanophosphors for emerging technological applications. RSC Advances, 15(25), 20040–20060. doi: 10.1039/D5RA03126E
Kiran, R., Kamath, N., Sayyed, M. I., Almuqrin, A. H., & Kamath, S. D. (2025b). A review of recent developments in rare earth-doped nanophosphors for emerging technological applications. RSC Advances, 15(25), 20040–20060. doi: 10.1039/D5RA03126E
Kragh, H. (2016). The Lost Elements: The Periodic Table’s Shadow Side. Ambix, 63(1). doi: 10.1080/00026980.2016.1201303
Kumari, A., & Sahu, S. K. (2023). A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet. Separation and Purification Technology, 317, 123527. doi: 10.1016/j.seppur.2023.123527
Li, Z., Diaz, L. A., Yang, Z., Jin, H., Lister, T. E., Vahidi, E., & Zhao, F. (2019). Comparative life cycle analysis for value recovery of precious metals and rare earth elements from electronic waste. Resources, Conservation and Recycling, 149. doi: 10.1016/j.resconrec.2019.05.025
Liu, Q., Qian, M., & Huang, Y. (2025a). Studies on the preparation of rare-earth-doped alkaline borosilicate glass and its optical properties. Next Materials, 9, 100969. doi: 10.1016/j.nxmate.2025.100969
Liu, Q., Qian, M., & Huang, Y. (2025b). Studies on the preparation of rare-earth-doped alkaline borosilicate glass and its optical properties. Next Materials, 9, 100969. doi: 10.1016/j.nxmate.2025.100969
Martínez-Montoya, P. A., del Río, J. M., de J. Morales-Ramirez, A., & Corea, M. (2023). Europium recovery process by means of polymeric nanoparticles functionalized with acrylic acid, curcumin and fumaramide. Journal of Rare Earths. doi: 10.1016/j.jre.2023.11.006
Martínez-Montoya, P. A., Sanchez-Alvarado, R. G., Medina-Velazquez, D. Y., Carrera-Jota, M. L., Garnica-Chávez, P., & Morales-Ramirez, A. de J. (2023). Solid-liquid extraction for yttrium recovery using porous polymeric resin (XAD-7) functionalized with D2EHPA. Journal of Rare Earths. doi: 10.1016/j.jre.2023.10.026
Metwally, S. S., Hassan, M. A., & Aglan, R. F. (2013). Extraction of copper from ammoniacal solution using impregnated amberlite XAD-7 resin loaded with LIX-54. Journal of Environmental Chemical Engineering, 1(3). doi: 10.1016/j.jece.2013.05.002
Mineral Commodity Summaries 2024 – Rare Earths. (n.d.).
Parauha, Y. R., Kalyani, N. T., & Dhoble, S. J. (2025a). Recent trends in rare earth doped luminescent materials: A review. Journal of Molecular Structure, 1347, 143190. doi: 10.1016/j.molstruc.2025.143190
Parauha, Y. R., Kalyani, N. T., & Dhoble, S. J. (2025b). Recent trends in rare earth doped luminescent materials: A review. Journal of Molecular Structure, 1347, 143190. doi: 10.1016/j.molstruc.2025.143190
Patil, A. B., Tarik, M., Struis, R. P. W. J., & Ludwig, C. (2021). Exploiting end-of-life lamps fluorescent powder e-waste as a secondary resource for critical rare earth metals. Resources, Conservation and Recycling, 164. doi: 10.1016/j.resconrec.2020.105153
Rasoulnia, P., Barthen, R., Puhakka, J. A., & Lakaniemi, A. M. (2021). Leaching of rare earth elements and base metals from spent NiMH batteries using gluconate and its potential bio-oxidation products. Journal of Hazardous Materials, 414. doi: 10.1016/j.jhazmat.2021.125564
Real, A. B. (n.d.). MATERIALES CRÍTICOS Y SOSTENIBILIDAD: LAS TIERRAS RARAS Y LOS IMANES QUE POSIBILITARÁN UNA EUROPA MÁS VERDE.
Reck, B. K., & Graedel, T. E. (2012). Challenges in metal recycling. In Science (Vol. 337, Issue 6095). doi: 10.1126/science.1217501
Regueiro y González Barros, M. (2014). Minerales críticos en Europa : metodología para la evaluación de la criticidad de los minerales. Macla. Revista de La Sociedad Española de Mineralogía.
Rogosnitzky, M., & Branch, S. (2016). Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. BioMetals, 29(3), 365–376. doi: 10.1007/s10534-016-9931-7
Rudnick, R. L., & Gao, S. (2013). Composition of the Continental Crust. In Treatise on Geochemistry: Second Edition (Vol. 4). doi: 10.1016/B978-0-08-095975-7.00301-6
Rybak, A., & Rybak, A. (2021). Characteristics of some selected methods of rare earth elements recovery from coal fly ashes. Metals, 11(1). doi: 10.3390/met11010142
Scherzer, J., & Ritter, R. E. (1978). Ion-Exchanged Ultrastable Y Zeolites. 3. Gas Oil Cracking over Rare Earth-Exchanged Ultrastable Y Zeolites. Industrial & Engineering Chemistry Product Research and Development, 17(3), 219–223. doi: 10.1021/i360067a008
Shi, S., Pan, J., Dong, B., Zhou, W., & Zhou, C. (2023). Bioleaching of Rare Earth Elements: Perspectives from Mineral Characteristics and Microbial Species. In Minerals (Vol. 13, Issue 9). doi: 10.3390/min13091186
Strzałkowska, E. (2022). Rare earth elements and other critical elements in the magnetic fraction of fly ash from several Polish power plants. International Journal of Coal Geology, 258. doi: 10.1016/j.coal.2022.104015
Szabadvary, F. (1988). Chapter 73 The history of the discovery and separation of the rare earths (pp. 33–80). doi: 10.1016/S0168-1273(88)11005-2
Tan, Q., Li, J., & Zeng, X. (2015). Rare Earth Elements Recovery from Waste Fluorescent Lamps: A Review. In Critical Reviews in Environmental Science and Technology (Vol. 45, Issue 7). doi: 10.1080/10643389.2014.900240
The Role of Critical Minerals in Clean Energy Transitions (2021 & actualizaciones 2023). (n.d.).
Tunsu, C., Ekberg, C., & Retegan, T. (2014). Characterization and leaching of real fluorescent lamp waste for the recovery of rare earth metals and mercury. Hydrometallurgy, 144–145. doi: 10.1016/j.hydromet.2014.01.019
Tunsu, C., Petranikova, M., Ekberg, C., & Retegan, T. (2016). A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions. Separation and Purification Technology, 161. doi: 10.1016/j.seppur.2016.01.048
Tzili Apango, E. (2014). Reseña del libro: Estudios sobre China desde Latinoamérica : geopolítica, religión e inmigración, por Susan Chen Mok, Jorge Bartels Villanueva y Ricardo Martínez Esquivel , eds., San José : Universidad de Costa Rica, 2013. Estudios Internacionales, 46(178). doi: 10.5354/0719-3769.2014.32524
Virolainen, S., Repo, E., & Sainio, T. (2019). Recovering rare earth elements from phosphogypsum using a resin-in-leach process: Selection of resin, leaching agent, and eluent. Hydrometallurgy, 189. doi: 10.1016/j.hydromet.2019.105125
Wu, Z., Chen, Y., Wang, Y., Xu, Y., Lin, Z., Liang, X., & Cheng, H. (2023). Review of rare earth element (REE) adsorption on and desorption from clay minerals: Application to formation and mining of ion-adsorption REE deposits. Ore Geology Reviews, 157. doi: 10.1016/j.oregeorev.2023.105446
Xia, W., Pei, Z., Leng, K., & Zhu, X. (2020). Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures. In Nanoscale Research Letters (Vol. 15, Issue 1). doi: 10.1186/s11671-019-3243-0
Yuksekdag, A., Kose-Mutlu, B., Zeytuncu-Gokoglu, B., Kumral, M., Wiesner, M. R., & Koyuncu, I. (2022). Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE). Environmental Science and Pollution Research, 29(5). doi: 10.1007/s11356-021-16207-0
Zhang, B., Liu, K., Li, J., Chen, B., Huang, C. J., & Soboleva, N. (2025a). A comprehensive review on the rare earth elements improving microstructure and properties of laser cladded coatings. Journal of Alloys and Compounds, 1036, 181761. doi: 10.1016/j.jallcom.2025.181761
Zhang, B., Liu, K., Li, J., Chen, B., Huang, C. J., & Soboleva, N. (2025b). A comprehensive review on the rare earth elements improving microstructure and properties of laser cladded coatings. Journal of Alloys and Compounds, 1036, 181761. doi: 10.1016/j.jallcom.2025.181761
Zhou, B., Li, Z., & Chen, C. (2017). Global potential of rare earth resources and rare earth demand from clean technologies. In Minerals (Vol. 7, Issue 11). doi: 10.3390/min7110203
Zhou, Y., Zhu, Y., Chen, P., & Li, X. (2024). Effect of rare earth-transition metal electronic interaction on magnetism in FeCoEr alloys. Journal of Rare Earths. doi: 10.1016/j.jre.2024.12.008

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.
